
r-make: STAR 
 

Version: STAR_2.1.4a_r178  
 

Non-default Parameter: 
outSAMunmapped Within    
outFilterMultimapNmax 1    

chimSegmentMin 20    
chimScoreMin 1 

 

Default Parameter: 
outFilterScoreMin 0 

outFilterScoreMinOverLread 0.66 
outFilterMatchNmin 0 

outFilterMatchNminOverLread 0.66 
 
outFilterMultimapScoreRange 1 

outFilterMismatchNmax 10 
outFilterMismatchNoverLmax 0.3 

 
outFilterIntronMotifs None 
 

readMatesLengthsIn NotEqual 
 

clip3pNbases 0 
clip5pNbases 0 
 

outSJfilterOverhangMin 30 12 12 12 
outSJfilterCountUniqueMin 3 1 1 1 

outSJfilterDistToOtherSJmin 10 0 5 10 
 
scoreGap 0 

scoreGapNoncan -8 
scoreGapGCAG -4 

scoreGapATAC -8 
scoreGenomicLengthLog2scale -0.25 
scoreDelOpen -2 

scoreDelBase -2 
scoreInsOpen -2 

scoreInsBase -2 
scoreStitchSJshift 1 

seedSearchStartLmax 50 
seedSearchStartLmaxOverLread 1.0 
seedSearchLmax 0 

seedMultimapNmax 10000 
seedPerReadNmax 1000 

seedPerWindowNmax 50 
seedNoneLociPerWindow 10 



alignIntronMin 21 
alignIntronMax 0 

alignMatesGapMax 0 
alignSJoverhangMin 5 

alignSplicedMateMapLmin 0 
alignSplicedMateMapLminOverLmate 0.66 
alignWindowsPerReadNmax 10000 

alignTranscriptsPerWindowNmax 100 
alignTranscriptsPerReadNmax 10000 

 
chimScoreDropMax 20 
chimScoreSeparation 10 

chimScoreJunctionNonGTAG -1 
chimJunctionOverhangMin 20 

 
 
Rsamtools_1.8.6   

GenomicRanges_1.8.13 
rtracklayer_1.18.2 

 
  



Subread 
 

Read alignment and summarization were performed using programs included in Subread 
package (http://subread.sourceforge.net/) or Bioconductor R package Rsubread 

(http://bioconductor.org/packages/release/bioc/html/Rsubread.html). 
 

(1) Build the index used by the Subread and Subjunc aligners: 
 
For Illumina and Roche 454 data: 

 
subread-buildindex -M 8000 -f 24 -o hg19_subread_index hg19_chr_sequences.fa 

 
For SOLiD color space data: 

 
subread-buildindex -c -M 8000 -f 24 -o hg19_subread_index hg19_chr_sequences.fa 

 
These commands can be run on the command line of a Unix or Mac machine. Note that the index 

building can also be carried out in R using Bioconductor package Rsubread. 
 

(2) Perform read alignments: 
 
For expression analysis:  

 
subread-align -i hg19_subread_index -u -H -n 10 -m 3 -p 1 -S fr -d 0 -D 600 -I 5 

-P 6 -T 10 --DPGapOpen -1 --DPGapExt 0 --DPMismatch 0 --DPMatch 2 --trim5 0 --

trim3 0 -r reads1.txt -R reads2.txt -o subread_output.sam 

 
For identification of exon-exon junctions: 
 
subjunc -i hg19_subread_index -u -H -n 14 -m 1 -p 1 -S fr -d 0 -D 600 -I 5 -P 6 -

T 10 --trim5 0 --trim3 0-r reads1.txt -R reads2.txt -o subjunc_output.sam  

 
The Phred-score offset used for BGI and COH sites is 64 ('-P 6'). For the other sequencing sites, 
the offset is 33 ('-P 3'). 

 
Note that read alignments also be carried out in R using Bioconductor package Rsubread. 

 

(3) Read summarization 
 

Read summarization was carried out in R using the featureCounts function included 
in Bioconductor package Rsubread. An inbuilt NCBI RefSeq annotation (build 37.2) was included 

in this package. 
 
library(Rsubread) 

fc <- featureCounts(samfiles, "hg19",annot.ext = NULL, isGTFAnnotationFile = 

FALSE,  

    GTF.featureType = "exon", GTF.attrType = "gene_id", useMetaFeatures = TRUE,  

    allowMultiOverlap = FALSE, nthreads = 10, strandSpecific = 0,  

    countMultiMappingReads = FALSE, minMQS = 0, isPairedEnd = TRUE,  

    requireBothEndsMapped = FALSE, checkFragLength = TRUE, minFragLength = 0,  

http://subread.sourceforge.net/
http://bioconductor.org/packages/release/bioc/html/Rsubread.html


    maxFragLength = 2000, countChimericFragments = TRUE, chrAliases = NULL,  

    reportReads = FALSE) 

 
Note that the read summarization can also be carried out on the command line of a Unix or Mac 
machine using the featureCounts program included in the SourceForge Subread package. But 

users have to download the NCBI RefSeq gene annotation for human genome from NCBI ftp 
server and provide it to featureCounts program. 

 

(4) Normalization 
 
Normalization was performed in R using the voom function included in Bioconductor package 
limma. 

 
y <- 

voom(counts=fc$counts,design=design,lib.size=NULL,normalize.method="none",plot=FA

LSE,span=0.5) 

  



SHRiMP2 + BitSeq 

 

SHRiMP2 (v2.2.2) 
 

ILM reads 

FASTA=${PATH}/data/references/human_AceView.2010_ERCC_gtf.fasta 

INDEX=${PATH}/data/references/human_AceView.2010_ERCC_gtf-ls 

$SHRIMP_FOLDER/utils/project-db.py --shrimp-mode ls $FASTA 

 

$SHRIMP_FOLDER/gmapper-ls -L ${INDEX} -Q -E -N 16 -o 60 --max-alignments 120 -h 

90% -p opp-in --ignore-qvs --insert-size-dist ${mean}","${sd} -1 ${R1} -2 ${R2} 

>${OUT} 2>${LOG} 

samtools view -bS ${OUT} > ${OUT_BAM} 

or 

LIF reads 

FASTA=${PATH}/data/references/human_AceView.2010_ERCC_gtf.fasta 

INDEX=${PATH}/data/references/human_AceView.2010_ERCC_gtf-cs; 

$SHRIMP_FOLDER/utils/project-db.py --shrimp-mode cs $FASTA 

 

$SHRIMP_FOLDER/gmapper-cs -L ${INDEX} -Q -E -N 16 -o 60 --max-alignments 120 -h 

90% -p opp-in --ignore-qvs --insert-size-dist ${mean}","${sd} -1 ${R1} -2 ${R2} 

>${OUT} 2>${LOG} 

samtools view -bS ${OUT} > ${OUT_BAM} 

NOTE: fragment lengths mean and SD were calculated from Bowtie alignments to the 

transcript sequences 

 

BitSeq (v0.4.2) 
 

# FASTA file with transcript sequences 

FASTA=${PATH}"/data/references/human_AceView.2010_ERCC_gtf.fasta"; 

# file containing information about transcript lengths – created by BitSeq 

REF=${PATHD}"/data/references/AceView.tr"; 

# default BitSeq parameters 



PAR=${BitSeq}"/parameters.txt"; 

 

samtools merge -f -n $OUT_BAM $PATH/*.bam; 

$BitSeq/parseAlignment -f BAM $OUT_BAM -o $OUT_PROB --trSeqFile $FASTA --verbose 

-P 3 

$BitSeq/estimateExpression --verbose $OUT_PROB -o $OUT --outType RPKM -p $PAR -t 

$REF -P 16 

$BitSeq/getVariance --verbose -o ${OUT_MEAN} ${OUT}".rpkm" 

 

  



TopHat 2 + CuffDiff 2 
 

TopHat (v2.0.3) 
 

# index build on the genome sequences by Bowtie (letter or colour space 

accordingly) 

INDEX=${PATH}/data/references/hg19_genome_ERCC; 

tophat --bowtie1 --report-secondary-alignments --bowtie-n -n 2 -r ${mean} --mate-

std-dev ${sd} -p 15 -o ${OUT} ${INDEX} ${R1} ${R2} &> ${LOG} 

NOTE: fragment lengths mean and SD were calculated from Bowtie alignments to the transcript 

sequences 

 

CuffDiff (v2.0.0) 
 

cuffdiff -q -o CuffDiff_TH2_STD/ -p 30 -u -c 1 --no-update-check 

../human_AceView.2010_ERCC_exon.gtf 

BAM/SEQC_ILM_BGI_A_1_TopHat_2.0_std.bam,BAM/SEQC_ILM_BGI_A_2_TopHat_2.0_std.bam,B

AM/SEQC_ILM_BGI_A_3_TopHat_2.0_std.bam,BAM/SEQC_ILM_BGI_A_4_TopHat_2.0_std.bam 

BAM/SEQC_ILM_BGI_B_1_TopHat_2.0_std.bam,BAM/SEQC_ILM_BGI_B_2_TopHat_2.0_std.bam,B

AM/SEQC_ILM_BGI_B_3_TopHat_2.0_std.bam,BAM/SEQC_ILM_BGI_B_4_TopHat_2.0_std.bam  

BAM/SEQC_ILM_BGI_C_1_TopHat_2.0_std.bam,BAM/SEQC_ILM_BGI_C_2_TopHat_2.0_std.bam,B

AM/SEQC_ILM_BGI_C_3_TopHat_2.0_std.bam,BAM/SEQC_ILM_BGI_C_4_TopHat_2.0_std.bam 

BAM/SEQC_ILM_BGI_D_1_TopHat_2.0_std.bam,BAM/SEQC_ILM_BGI_D_2_TopHat_2.0_std.bam,B

AM/SEQC_ILM_BGI_D_3_TopHat_2.0_std.bam,BAM/SEQC_ILM_BGI_D_4_TopHat_2.0_std.bam 

NOTE: We were using the CuffDiff for expression estimates to ensure cross replicates and cross-

sample library size normalization 

  



TopHat 2 ‘G’ + CuffDiff 2 
 

TopHat (v2.0.3) 
 

# index build on the genome sequences by Bowtie (letter or colour space 

accordingly) 

INDEX=${PATH}/data/references/hg19_genome_ERCC; 

# location of transcriptome index build by TopHat based on GTF file with –G 

option (option set and GTF file provided only during ‘first’ execution) 

INDEX2=${PATH}/data/references/TopHat/human_AceView.2010_ERCC_TopHat 

tophat --bowtie1 --transcriptome-index=${INDEX2} --report-secondary-alignments --

bowtie-n -n 2 -r ${mean} --mate-std-dev ${sd} -p 15 -o ${OUT} ${INDEX} ${R1} 

${R2} &> ${LOG} 

 

NOTE: fragment lengths mean and SD were calculated from Bowtie alignments to the transcript 

sequences 

 

CuffDiff (v2.0.0) 
 

cuffdiff -q -o CuffDiff_TH2_G/ -p 30 -u -c 1 --no-update-check 

../human_AceView.2010_ERCC_exon.gtf 

BAM/SEQC_ILM_BGI_A_1_TopHat_2.0_g.bam,BAM/SEQC_ILM_BGI_A_2_TopHat_2.0_g.bam,BAM/S

EQC_ILM_BGI_A_3_TopHat_2.0_g.bam,BAM/SEQC_ILM_BGI_A_4_TopHat_2.0_g.bam 

BAM/SEQC_ILM_BGI_B_1_TopHat_2.0_g.bam,BAM/SEQC_ILM_BGI_B_2_TopHat_2.0_g.bam,BAM/S

EQC_ILM_BGI_B_3_TopHat_2.0_g.bam,BAM/SEQC_ILM_BGI_B_4_TopHat_2.0_g.bam  

BAM/SEQC_ILM_BGI_C_1_TopHat_2.0_g.bam,BAM/SEQC_ILM_BGI_C_2_TopHat_2.0_g.bam,BAM/S

EQC_ILM_BGI_C_3_TopHat_2.0_g.bam,BAM/SEQC_ILM_BGI_C_4_TopHat_2.0_g.bam 

BAM/SEQC_ILM_BGI_D_1_TopHat_2.0_g.bam,BAM/SEQC_ILM_BGI_D_2_TopHat_2.0_g.bam,BAM/S

EQC_ILM_BGI_D_3_TopHat_2.0_g.bam,BAM/SEQC_ILM_BGI_D_4_TopHat_2.0_g.bam 

NOTE: We were using the CuffDiff for expression estimates to ensure cross replicates and cross-

sample library size normalization 

 

  



Methods developed and used for Magic analysis of the SEQC main and 

neuroblastoma RNA-seq projects 
 

The Magic RNA-seq analysis pipeline was developed at NCBI for the double purpose of analyzing RNA-seq data in clinical cohorts, in 

the hope of identifying features associated to disease conditions, and to annotate the genes for the public AceView genes database. 

The SEQC projects, with built in truths and controls, and multiple teams involved in parallel was ideal to optimize the concepts and 

thoroughly test the code.  Limitations due to the technical noise and biases inherent to the technique being understood, Magic is 

now able to provide specific expression measures for transcripts and genes and their differential, together with a measured false 

discovery rate. The Magic code is available on the AceView NCBI website www.aceview.org  in the Downloads, Software tab, Magic 

at ftp://ftp.ncbi.nlm.nih.gov/repository/acedb/Software/Magic . The package, written in C, is completely original, self-standing and 

open source. It includes its own aligner and all the necessary software to perform the integrative data analysis. Once experiments 

are described in the associated acedb/AceView object-oriented meta-database, the pipeline runs automatically, using parameters 

optimized for that experiment and protocol. It generates data tables for gene and transcripts expression, new exon, intron and 

transcripts discovery, SNVs and rearrangements as well as multiple quality control reports.  

Here we describe the application of the Magic pipeline to the analysis of the ~10 terabases of SEQC RNA-seq data.   

The Magic pipeline 

The Magic pipeline, detailed in Figure 1, includes quality control, alignment, gene annotation, quantification, normalization, 

selection of differentially expressed features and discovery of new genes and transcripts. The 2013 SEQC main study focused on 

quantification of the expression of genes, transcripts and exon junction discovery. In addition, the Neuroblastoma study identified 

differential genes and transcripts between phenotypic classes (by disease stages and MYCN amplification), and characterized new 

transcripts and new genes. 

 

http://www.aceview.org/
ftp://ftp.ncbi.nlm.nih.gov/repository/acedb/Software/Magic


 

Figure 1: The complete Magic pipeline dataflow for RNA-seq analysis.  

Read alignments and target selection 

Read pairs are sorted alphabetically and aligned as single objects, using the Fastc modification of the fasta format, representing pairs 

on a single line as ATGNC><CCTATTT. The mapping strategy is to hash a dense set of seeds of length 16 bases and scan the targets 

using a fast seed-extension automaton auto-adaptable to the mismatch profile of the platform. Alignments may include 

substitutions, short insertions or deletions.  RNA is aligned discontinuously on the genome, allowing for discovery of exon junctions, 

structural rearrangements or, simply, polyA addition sites and sequence adaptors, which are recognized in the unaligned 

overhanging ends of reads. The eventual adaptor sequences, and poly A tails are trimmed dynamically during the alignment, 

verifying that the trimmed part does not match the target genome or gene, and eventually discovering the adaptor sequence.  

Magic maps the reads in parallel on multiple targets, and then selects the best paired alignments across all targets. The target 

sequences used are available at ftp://ftp.ncbi.nlm.nih.gov/repository/acedb/Software/Magic/TARGET.human.2013_06_15.tar.gz , 

see the fasta files in TARGET/Targets/hs.*.fasta.gz. For SEQC studies done in 2013, we used  

 the reference genome (GRCh 37, without patches) and  three gene annotations:  

 AceView genes (264,387 transcripts, from 55,836 genes, 2011 subset of the 2010 version): AceView 2010 genes integrate 

and summarize all human cDNA sequences in GenBank, dbEST and RefSeq NM/NR transcript models and all Entrez gene 

models from 2010. Entrez gene names are used when available; otherwise genes are named using an AceView identifier, 

stable across releases. cDNA sequences in GenBank define about twice as many genes and close to twice as many exon 

junctions than RefSeq only (370,000 rather than 198,000). AceView 2010 annotates 200,000 spliced transcript variants, that 

is, 7 times more alternatively spliced variants than RefSeq. 

 RefSeq  v104 (40,894 transcripts from 24,536 genes, January 2013)  

 Encode v15/Ensembl 37.70 (cdna.all and ncRNA, minus rRNAs: 194,703 transcripts from 56,071 genes, released January 

2013)].   

ftp://ftp.ncbi.nlm.nih.gov/repository/acedb/Software/Magic/TARGET.human.2013_06_15.tar.gz


 We also used as target the mitochondrial genome (NC_012920.1),  

 the ribosomal RNA 5S and 45S precursor (NR_046235 and NR_023363),  

 small non coding RNA genes (including 8611 genes from Ensembl 37.70: 1923 snRNA, 1529 snoRNA, 3110 miRNA and 2049 

misc-RNA, complemented by 625 tRNAs from Lowe, UCSC tRNA track, February 2012),  

 then the 92 ERCC RNA spike-in sequences, and  

 finally the imaginary genome as a mapping specificity control. The imaginary whole genome is constructed by 

complementing the bases (exchange A:T and G:C), but not reversing the order: it has exactly the same statistics as the 

genome but is a completely alien decoy: hits to this target are false positives and characteristics of their alignments are 

used to tune the alignment quality filters.  

Once fragments have been aligned to all targets, a universal scoring system allows Magic to select the best alignments for each read 

pair. For RNA-Seq, each alignment is scored by adding one point per base aligned and removing eight points per mismatch (base 

substitution, insertion or deletion). The length of the aligned region is then recursively clipped to optimize this score. As a result, no 

mismatch is reported closer than 8 bases to the edge of the aligned segment, allowing reliable recognition of substitutions or indels 

and precise cooperative discovery of exon-intron boundaries. For whole genome or exome sequencing, the penalty for mismatches 

is reduced to 4, since we only expect rare discontinuities in the alignment. For each read pair, alignments on all targets, genes or 

genome, are scored, and only the best scores, often on multiple targets, are kept, giving preference to spliced over unspliced targets 

in order to disfavor pseudogenes. Global quality filters are then applied, more tolerant to mismatches in full length unique 

alignments. In the quasi-unique mode (used in the NB MAV and Main 2012 files), read pairs mapping over their entire length and 

equally well to several genes or genomic loci, up to 9 sites, are assigned in Bayesian proportion seeded on the number of reads 

uniquely mapping to these loci. For example, in the NB cohort of 498 individuals sequenced at BGI as Illumina HiSeq (60 million reads 

PE100 bp), 95.41% of the reads mapped uniquely, 1.43% mapped equally well to 2 to 9 loci, an additional 2.02% mapped to a single 

genomic site but to two antisense transcripts and could not be attributed to a single gene, because the libraries did not preserve the 

RNA strand. Only 0.79% of the reads were unmapped and unjustified, the remaining 0.36% being rejected for quality reasons.  

Magic exports a richer and more explicit alignment format than Bam/Sam, so that the downstream tracking of mismatches, SNPs, 

discovered splice sites and structural rearrangements is simplified. Analysis is fast: typically, 1 gigabase of RNA sequences are aligned 

on all targets using about 6 hours of CPU, 8 GB of RAM and 2 gigabytes of disk space.  

In practice there are no parameters to specify as Magic is auto-adaptive. The reads are described in the object oriented AceView/AceDB run 

database, essentially locating the original fastq file and specifying the platform (ILM, Roche, SOLiD), the protocol (Total or polyA, stranded or not) 

and the eventual existence of paired reads. Groups of reads are manually created in the database, for instance in SEQC main, by sample, platform, 

site or library, and in NB by phenotype. Actions to be performed such as sample comparisons, DEG calls or covariance analysis, titration analysis 

and so on are specified for each group. The pipeline is then ran very simply as     “MAGIC ALIGN GENE_EXPRESSION INTRON_DISCOVERY SNP ”,. 

A typical outcome is illustrated by the NB project: of the 30.7 billion reads (paired), 98.9% were aligned at high quality to genes or 

the genome, with on average 98 nt aligned per 100 nt read and 99.703% identity (1.16 transitions, 1.64 transversions, and 0.17 

insertions/deletions per kb aligned, but the majority of those mismatches are lane dependent sequencing noise: in regions covered 

at least 10 fold, where SNPs supported by at least 4 variant pairs and 20% of the pairs bearing the SNV can be called, only 14% of the 

mismatches contribute to SNVs). In contrast, only 0.00126% of the reads mapped to the imaginary genome and only partly, aligning 

over an average of 37 nt.  

Coverage plots, introns and exons discovery 
Best alignments to the various targets are then summarized and merged by projection on the genome, yielding a coverage density 

plot with sharp exon boundaries and no leaking into introns. The genome is then partitioned into coding regions (1.84%, of which 

successively 1.09 RefSeq + 0.50 AceView + 0.02 Ensembl + 0.23 new), UTR/non-coding exonic regions (6.86%, of which 1.10 RefSeq + 

3.22 AceView + 0.39 Ensembl + 2.15 new), intronic (50.13%, of which 32.85 RefSeq + 12.72 AceView + 2.27 Ensembl + 2.30 new) and 

intergenic regions (41.16%), using hierarchically the annotations from RefSeq, AceView, Encode and the Magic new transcriptome 

(derived from RNA-seq), and giving priority to coding over non coding over introns over intergene.  

Candidate new exons are considered when coverage exceeds a threshold well above the background noise (50 fold coverage in the 

NB experiment, where intergenic is covered on average 10.2 fold). At 50 fold coverage, 22% of the genome is expressed, 5% in 

previously annotated exons (RefSeq, AceView or Ensembl) and 12% in introns. New exons and new exon junctions get validated only 



if they naturally integrate into full transcripts with commensurable support over all elements. For example, a new exon junction 

supported only 300 times in a gene with local coverage 100,000 is rejected. Indeed, we observed that a low level (0.5% to 1%) of 

artefacts, rearrangements and deletions, affects the RNA/cDNA molecules structure during RNA-seq library preparation. This 

estimate is down from 3% in standard cloned cDNA libraries, yet because of the size of RNA-seq experiments, these disguised false 

new variants flourish and the absolute number of supporting reads is less relevant than the local relative support: in very highly 

expressed genes, one observes a myriad of deceptive artefactual ‘alternative variants’. Similarly, a new exon junction mapped in an 

area apparently untranscribed and with no independent exonic support is likely a (mapping/gene family/pseudogene/structural) 

artefact, because real transcription is processive and transcripts ends must be found. As a result of these sanity filters, only a fraction 

around 20% of the newly discovered elements will contribute to a reliable RNA-seq based gene annotation. For example, NB new 

exons finally cover 68.5 Mb of genome (including 7 Mb of new protein coding region and 61.5 of UTR or non-coding) and absorb 

4.38% of the 2.7 Tb of RNA sequences aligned (outside mitochondrial and ribosomal RNA genes). 71 Mb of new intronic sequences 

located outside of previously annotated gene boundaries – in previously ‘intergenic’ regions -  are defined in the process and add up 

to the 1.48 Gb of previously annotated intronic sequences (in non-stranded RNA-seq).  

The ‘background noise’ used in the expression index computation is measured in each run as the average coverage of the genome 

outside the known and new premessenger annotations. We consider it mainly reflects genomic contamination, because in the SEQC 

main study, the intergenic coverage in the very same sample sequenced in different libraries, platforms and sites fluctuates from 

library to library (Figure 2). 

 

Figure 2: Coverage of intergenic region in the SEQC main 4 samples depends on site, protocol and library preparation 



In the neuroblastoma study, one of the RNA samples, NB350, was likely partly degraded, leading to enrichment of intergenic 

(genomic DNA contamination) relative to exonic and intronic (Figure 3):

 

 

 

 

Quantification of RNA-seq expression data 

 

To ensure specificity of the mapping, only ‘compatible’ pairs, where both reads are aligned over 80% of their length in the same 

gene or as a gene extension, in close vicinity on the genome, and in compatible orientation, are used to compute the expression 

indexes presented in the RNA-seq expression tables. Actually, 95.82% of the fragments in the NB project map as compatible pairs. 

Reads mapping equally well to several alternative transcripts of the same gene are counted only once in the gene.  Regarding the 

transcripts, the critically desirable feature is to measure the distinctive part of each alternative transcript. This is achieved by a 



simple procedure we call hierarchic mapping. Each read mapping equally well to multiple transcripts (say in exons common to 

variants .a, .c and .f) is attributed to the variant with the first alphabetic name (variant .a). AceView transcripts are named by 

decreasing order of protein coding potential or of length. As a result, if transcripts .a and .b share 2 kb of exons, but differ only by a 

splice junction, only the reads mapping specifically to this structural difference, characteristic of transcript .b, but absent from .a, will 

score in .b. Similarly, only the part of transcript .v that is not present in any of the variants .a .b .c .d …. u will score in .v. Differential 

use of a particular promotor, termination signal or splice pattern will be cleanly reported in the first variant possessing this feature. 

Contrary to the Cufflink procedure, this method is numerically stable because it does not involve a matrix inversion. It is valid even if 

additional alternative forms, not yet annotated, exist in vivo.  The three NB or SEQC Main transcript tables dated December 2013 

(RefSeq, AceView and Ensembl) use this hierarchic mapping strategy, which proved in our hands to yield more powerful predictors 

than genes, non-hierarchical transcripts or exon junctions.  

The Magic normalized RNA-Seq index of expression is directly comparable to a normalized microarray logarithmic luminosity. The 

logarithm is introduced because gene expression is mostly log-normal. As usual, the index is normalized to be independent of the 

size of the experiment and of the length of the gene. But several corrections are quantified run by run and introduced to 

compensate for undesirable batch effects:  the insert length of the library, which introduces a steric constraint on the coverage of 

short genes; the 3’ bias, which limits the coverage of long genes; the level of genomic contamination, estimated from the density of 

intergenic reads, excluding new exons discovered in the experiment; and the eventual presence of extremely highly expressed 

genes. Correcting for these measurable effects, which are library dependent and occasionally strong, stabilizes the Magic index 

across samples.  Finally, the sampling fluctuations, which affect the counts in low expressed genes, are absorbed by the log(sqrt) 

function, also known as inverse hyperbolic sine. All these corrections affect the normalization factor z, defined below, while 

maintaining the read counts n on the original scale, to correctly control the sampling fluctuations. Neglecting these refinements and 

corrections, the Magic index would be equal to log2(1000 FPKM), so FPKM=1 would correspond to an index of 9.96.  

The index is computed a 

Index = log2 (  √(   )    )     + log2 (z)     ,  with z = 10
12

r/N’l’ 

 n is the number of reads aligned in the gene. A read partially aligned counts as a fraction. 

 b is the background noise over the length of the gene, mainly corresponding  to genomic contamination. 

 r is the average aligned length of the reads, in bases. 

 N’ /10
12 

is the corrected number of terabases aligned to the known transcriptome, after excluding the ribosomal and 

mitochondrial genes and the genes gathering more than 2% of the total number of bases aligned (31 instances in this 

experiment, 16 EEF1A1, 7 DDX1, 4 ALB, 2 COL1A1, 1 COL1A2 and 1 TRIB2). This correction compensates an apparent 

variation of the index of all other genes in the presence of highly-variable extremely-expressed genes, such as albumin in 

liver or hemoglobins in blood.  

 l’ is the length of the gene effectively sequenceable in the particular experiment. First, to evaluate the 3’ bias, the coverage 

of very long ubiquitous genes (such as EEF2 (3.5kb), FLNA (8.5 kb), MALAT1 (7kb), AHNAK (18 kb) or NEAT (22 kb)) is 

measured. In polyA selected experiments, RNA degradation usually leads to incomplete coverage of these long genes. The 

covered length is often around 3 kb, sometimes much longer, but may also be below 1 kb. This length is used in each run as 

an upper bound lmax. Second, the average length  of the insert is measured from the aligned read pairs, and subtracted 

from the length l of each gene to compensate for the steric constraint. Indeed l’=(l –) is the number of possible positions 

of the insert in the gene. This correction matters for short genes, under-represented in libraries with long insert size. Finally, 

l’ is restricted to the interval [ lmax]. 

 If b is small and n is large, the index is approximately log2(z .n) representing the log2 of the coverage of the gene per 

terabase aligned  

For genes that are not ‘significantly expressed’, i.e. with less than 4 reads above the experimental noise, the index is flagged in the 

tables as  NA/value, indicating a tradeoff between low precision due to high sampling error and low accuracy due to the proximity of 

the zero counts plateau. For zero counts, the index is lower for larger genes and deeper experiments, expressing higher confidence 

that the gene is not expressed. 



When the same biological sample is sequenced in multiple runs (e.g. the 15 NB samples with duplicate runs), reads mapped to the 

same gene are cumulated before computing the index. In phenotypic groups consisting of different individuals, the index of the 

group is computed as the average index of all participants. Thus in additive groups, we compute the log of the average of the 

number of reads, while in phenotypic groups we compute the average of the log. 

The MAV tables provided for the AceView Magic predictions, dated 20120828, 20121127 and 20121210, used a less stringent 

version of the expression index, allowing quasi unique alignments, some partial, non-hierarchic mapping to transcripts and a 

different quantification of the zero counts:  the index corresponding to read counts below 4 were linearly interpolated between 0 for 

0 reads and the computed index value for 4 reads. The newer more refined expression index files, using uniquely mapped pairs and 

hierarchic quantification of the transcripts, are available for AceView, RefSeq and Encode genes as supplementary tables dated 

_December2013. 

All tables are sorted by descending maximal index of expression across the 498 samples. The first columns contain metadata 

connecting AceView gene to RefSeq, GeneID, Agilent expression array probes and genomic coordinates on the human reference 

build 37. In the December 2013 NB files, the relation between the expression index and the average gene coverage is given by the 

plot in Figure 4. 

 

Figure 4: Relation between the expression index and the average gene coverage in individual samples (blue/gray) and in the sum of 

all samples (red). The variations per sample reflect the fact that some experiments (low grey/blue) have twice as many reads as 

others (high grey/blue).  

 

Selection of differentially expressed genes or transcripts in RNA-seq or arrays 

 

Selection of differentially expressed genes, or transcript variants, or exons or junctions or microarray probes between conditions A 

and B is delicate, and needs to circumvent the difficulties associated to sampling errors affecting the low expressors.  
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1. The method needs to robustly recognize differential genes, including those expressed in only one condition, to be resilient 

to outliers, and to be insensitive to the precise normalization of the low expressed genes.  

2. When sampling a natural population, the heterogeneity across individuals may be multimodal, due to functional 

redundancy, as there are multiple ways to achieve the same phenotype. This fact makes conventional statistics based on 

generalized Gaussian assumptions inapplicable.  

3. Finally an estimation of significance and false discovery rate is needed. 

Examining the distribution of indexes across two groups to be compared, the general idea is to delineate for each gene or transcript 

the eventual existence of two distinct zones of expression, the A and B zones, where either A or B widely predominates. For the 

most discriminative DEGs, the A and B zones are fully separated: all A samples fall in index zone A, all B samples in index zone B. But 

in general, the two conditions overlap, leaving a gray zone in the center. 

 

Figure 5: Selection of differentially expressed genes between two conditions, A red and B blue: the normalized distribution of 

indexes of expression for each condition is plotted versus the index of expression (x10). A cumulated count, starting from the 

extremities of the distribution, identifies the zones of dominance of the red, or the blue, and the choice of the purity ratio (here set 

at 4) allows to define the less informative (gray) index zone, where none of the conditions predominates. This method is insensitive 

to the exact measure of low expressors as it cumulates with equal voting power all individuals to the left of the gray zone    The left 

panel shows a quasi-perfect DEG with a spread out distribution, and score 90+90: most of the index range is discriminative.   

 

In practice, we construct the smoothed histogram of the index of expression of each gene for conditions A and B. Each individual 

contributes an elemental Gaussian of area 1 and sigma 0.5 centered on the measured value. The width is not supposed to catch the 

sampling error, but rather to represent some biological incertitude in the measure. The 2 histograms are normalized to a global area 

of 100. We then select a heuristic 'purity ratio' R which controls the width of the gray zone (usually between 1 and 3; for example, 

with R=3, 75% individuals in zone A are A). To locate the gray zone boundaries, we start from the left of the distribution, and count 

the numbers a and b of A and B individuals up to a moving frontier, and stop when (a-b) is maximal, (b-a) is then also maximal on the 

right. We then extend the gray zone around this frontier until on the A side, a>Rb and on the B side, b>Ra.  

The differential scores are measured on each side of the gray zone: as the percentage of A samples minus B samples in the A zone, 

and as the percentage of B-A in the B zone. The sum of the A and B scores is the differential score of the gene or feature. It varies 

from 0 to 200, a perfect score of 100+100 indicates a DEG for which the 2 distributions do not overlap. A score of 120 = 30 + 90 

would indicate that about 30% of A and 90% of B samples are classifying. 

We then add two conditions: the difference of average index between the A and B distributions is chosen (at least 1 in the per stage 

comparisons, i.e. the fold change is at least 2). Also, the low limit of the high zone must be at least 3 fold above the average 

‘significantly expressed’ index in the group (index around 7.5 to 10, depending on the sequencing depth of the run).  
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This simple method has three important advantages: It does not depend on the precise quantification of the low expressors; in fact 

the method mostly depends on the qualitative ordering of the samples by their index of expression. It is robust against multimodal 

distributions.  It is insensitive to outliers that can be biological exceptions or mislabeled samples. In fact, in every large scale 

experiment from the SEQC or other projects, where comparison to microarrays, to biological replicates, or just to the annotated sex 

was possible, 1 to 5% of the samples were found to be mislabeled.  In the course of the present study, 3 samples were re-assigned.  

Estimating the False Discovery Rate of differentially expressed features  

 
Depending on the endpoint, the number of genes, transcripts or SNPs measured as differential between the 2 conditions, A and B, 

varies greatly from just a few in the High-Risk Die-Survive case, to many thousands in the Favorable-Unfavorable case. But because 

the number of potentially tested elements is extremely large, fifty thousand gene, three hundred thousand transcripts, millions of 

SNPs, it is necessary to evaluate the number of false positives expected by chance when testing a multiple hypothesis.  

 

There are two methods: theory and simulation. In the theoretical approach, a mathematical model of the experiment is developed 

and the number of elements exceeding by chance a given threshold is computed ab initio. This is delicate because the premises of 

the model may not apply: for example, expression of neighboring genes can be correlated, contradicting the implicit hypothesis of 

independence of the measured elements. In the simulated "Monte-Carlo" approach, the number of false positive is estimated by 

randomly shuffling the classes and counting the apparent differential features using the exact same protocol as in the real 

experiment.  

Given 2 phenotypic groups A and B of size m and n, we randomly partition N times the A+B cohort into 2 random strata I and I, 

also of size m and n, both containing the same proportion m/n of A and B elements and we compare the histogram h(s) of the 

number of elements with differential score s between A and B to the  noise histogram k(s) using the average of the N=10 random 

strata, rounding each average value to the closest superior integer. The false discovery rate is then evaluated as the ratio of the 

noise to experiment observations at or above threshold t 

                   FDR(t) =H(t) / K(t),    with H(t) = ∑  ( )
   

   
;  K(t) =  ∑  ( )

   

   
 

 

For the easy endpoints, we observe thousands of highly reliable differential elements with FDR below 1/1000. For the difficult end 

points, we only observe a few elements while accepting a FDR around 20%.  

 

The underlying logic in this method is that although the measure of the index of expression of each gene may be noisy, these 

variations will affect in the same way the A/B experiment and the random strata, so that at low score, most differential elements 

probably represent random sampling fluctuations. The resampling stratification allows to choose a threshold auto-adapted to the 

measures in each experiment. Interestingly, the method is applicable even if the classes A and B are of different size (m > n) and 

even if we do not equalize the random strata relative to external characteristics (propensity sampling). In the worst case, the 

number of differential elements in the random strata is increased, leading to an overestimation of the false discovery rate.  

As an illustration, in the case of MYCN amplified (MNA) versus not amplified differentially expressed transcripts, the system selects a 

threshold above the noise evaluated by 10 iterations (red curve), yielding a FDR below 10
-3

. 



 

Figure 6: Selection of threshold minimizing FDR while keeping a maximum of differential features, on the example of transcripts 

expressed less in MNA than in non-MNA. The distribution of transcripts that might be called differential is shown for the experiment 

(bluish curves) and the controls (10 random draws; red curve low and to the left).  
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